확률 변수 $Y$가 모수 $n$ 과 $p$를 가지는 이항분포를 따른다면, $Y_1, \cdots ,Y_N \sim^{i.i,d}B(n,p)$ 라고 한다.
$P_Y(y)=P(Y=y_i)$이며, 확률변수 $Y$는 베르누이 시행을 $n$번 시행 했을 때, 그 중에서 $y_i$번 성공할 확률을 의미한다.
$\begin{aligned} P(Y=y_i) = f(y_i;n,p) = \begin{pmatrix} n \\ y_i \end{pmatrix}p^{y_i}(1-p)^{n-y_i}, \quad 0 \le y_i \le n \end{aligned}$
$\sum_{i=1}^N P(Y=y_i) = \sum_{i=1}^N \begin{pmatrix} n \\ y_i \end{pmatrix} p^{y_i} (1-p)^{n-y_i}=1$ (이항정리) .
$F(y;n,p) = P(Y \le y) = \sum_{i=1}^N \begin{pmatrix} n \\ y_i \end{pmatrix} p^{y_i} (1-p)^{n-y_i}$
$M_Y(t) = E(e^{tY}) = \sum_{i=1}^N \begin{pmatrix} n \\ y_i \end{pmatrix} (pe^t)^{y_i} (1-p)^{n-y_i}=(pe^t + (1-p))^n$ (이항정리)
$\mathcal{K}_Y(t) = log M_Y(t)=n \cdot log(pe^t+(1-p))$
$E(Y) = np$
$\\begin{aligned}\\sum_{i=1}^N y_i \\cdot P(Y=y_i)=\\sum_{i=1}^N y_i \\cdot \\begin{pmatrix} n \\\\ y_i \\end{pmatrix} p^{y_i} (1-p)^{n-y_i}
\\ = \sum_{i=1}^N y_i \cdot \frac{n!}{y_i!(n-y_i)!} p^{y_i} (1-p)^{n-y_i} \\ = \sum_{i=1}^N y_i \cdot \frac{n \cdot (n-1)! }{y_i (y_i-1)!(n-y_i)!} p \cdot p^{y_i-1} (1-p)^{n-y_i}\end{aligned}$
※ $m = n-1,\\quad s= y_i-1$
$= np \\cdot \\sum_{s=0}^m \\frac{m!}{s! (m-s)!} p^s (1-p)^{m-s}$(**이항정리**)
$Var(Y) = E(Y^2)-E(Y)^2 =np(1-p)$
$E(Y^2)=\sum_i y_i^2 \cdot P(Y=y_i) = \sum_{i=1}^N y_i^2 \cdot \begin{pmatrix} n \\ y_i \end{pmatrix} p^{y_i} (1-p)^{n-y_i}$이므로,
※ $m = n-1,\quad s= y_i-1$
= $np \\cdot \\sum_{s=0}^m y_i \\begin{pmatrix} m \\\\ s \\end{pmatrix} p^s (1-p)^{m-s}$
= $np \\cdot \\sum_{s=0}^m (s+1) \\begin{pmatrix} m \\\\ s \\end{pmatrix} p^s (1-p)^{m-s}$
$E(Y^2)=np \cdot (\sum_{s=0}^m s \cdot \begin{pmatrix} m \\ s \end{pmatrix} p^s (1-p)^{m-s}+\sum_{s=0}^m 1 \cdot \begin{pmatrix} m \\ s \end{pmatrix} p^s (1-p)^{m-s})$
∴ $E(Y^2) = np(mp+1) = np((n-1)p+1) = np(np-p+1)$
$Var(Y) = np(np-p+1) - (np)^2 = np(1-p)$